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1. Introduction      

There is clear demand for reliable weather, marine and climate forecasts at different time scales 
for a variety of societal applications. The improvement of the observing systems, model 
development, and computer resources have pushed the operational forecasting activities to 
expand well beyond the traditional short-range (1-3 days) weather forecast. Current operational 
forecasting capabilities take advantage of better initialization techniques, incorporate 
probabilistic methods to cope with the chaotic nature of the atmosphere, and rely on coupled 
ocean -atmosphere models that can predict the slowly evolving sea-surface-temperature and its 
impact on the atmosphere, to progressively increase the lead time of forecast horizon.  

Medium-range (10-15 days) weather and marine forecasts are now produced operationally in 
the major forecasting centers, as well as forecasts of climate at seasonal (up to 6-12 months 
lead time) time scales, and more recently, forecasts at subseasonal time scales (1-2 months 
lead time), bridging the gap between weather and climate.  Figure 1.1 shows schematically the 
time and spatial scales characteristics of the different forecasting systems. Given the coupled 
nature of the ocean-atmosphere system, it is expected that the ocean will play an active role in 
the forecasting systems at all lead-times in the future1. 

Although the observational needs of the different forecasting systems vary, all of them revolve 
around four main activities: initialization of the ocean and atmosphere for subsequent prediction; 
model and data assimilation development; forecast verification and, in some cases, calibration 
of model output; and hindcasts for calibration and skill assessment. Both verification and 
calibration of forecasts require long ocean and atmosphere reanalyses and reforecasts. The 
reanalyses are also used for monitoring of the Earth System’s climate. This paper discusses the 
requirements of ocean and boundary layer observations in the tropical Pacific from the 
perspective of forecasting systems spanning different time-scales: medium range (section 2), 
seasonal (section 3) and monthly (section 4), organized in order of their maturity. The 
observational needs for reanalyses, with emphasis on their use for climate monitoring, are 
discussed in more detailed in section 5. Section 6 provides a summary of recent and future 
developments, including decadal forecasts, coupled forecasting systems, as well as coupled 
ocean-atmosphere reanalyses and initialization of forecasting systems. Section 7 presents a 
summary of general considerations that are common to all the different applications, with 

                                                
1 For example, the ECMWF medium range ensemble prediction system has used a coupled ocean-wave-
atmosphere model since November 2013. 



emphasis on the interpretation of observing system experiments, model error, and the different 
applications of the observations. The paper ends with a summary of data requirements and 
specific recommendations (section 8). 

 

 
Figure 1.1 - Schematics of the dependence of forecast skill as a function of lead time and spatial 

resolution. The different size of the vertical bars is indicative of the characteristic averaging time (hours-
days, weeks, seasons) for which the forecast is issued. 

As such, the scope of the paper outlined above is already too wide, and there are topics not of 
relevance not explicitly addressed here, but are covered in other white papers. For example, the 
needs for medium-range high resolution marine forecasting systems are discussed in TPOS-
2020 white paper 5 (WP5, Fujii et al., (2014)). The needs for model development regarding 
parameterization of atmospheric convection and boundary layer processes,  a cross-cutting 
theme for forecasting activities on all time-scales, are discussed in TPOS-2020 WP11 (Cronin et 
al., 2014). Ocean biochemistry requirements are addressed in a separate paper (TPOS-2020 
WP6, Mathis et al., 2014). The needs to calibrate and reprocess satellite data are covered in 
TPOS-2020 WP9 (Lindstrom et al., 2014). 

To facilitate the discussion of the data needs, Appendix A introduces a naming convention 
regarding the processing level of the observations, the quality control, and the time-delivery 
properties. 

2. Global NWP and Wave forecasts at the medium rang e  

Global Numerical Weather Prediction (NWP) models are used to produce medium range 
weather forecasts (out to 15 days), with a horizontal resolution of typically 15-50 km and a 
vertical resolution of 10-30 m near the surface increasing to 500 m-1 km in the stratosphere.  



There is a strong interest in using NWP model output to predict the risk for extremes or severe 
and damaging weather events. Statistical approaches based on forecast ensembles are used to 
predict the probability for extreme or rare events at longer lead times. Such ensembles require 
good knowledge of the uncertainty in all input data including the observations. Global NWP 
models are also used to provide boundary conditions for regional NWP models. 

 
Figure 2.1 - Progress in the ECMWF operational NWP forecast skill since 1989 (OPS, red line) and in 
ERA-Interim (green line). The skill is measured as the forecast lead time when correlation drops below 
80%. The statistics are for the Northern Hemisphere Z500. Progress is about 1 day per decade. The 

difference between OPS and ERA-Interim (lower panel) filters out changes due to intrinsic predictability of 
the atmosphere, and highlights progress due to model and data assimilation improvement. The observing 
system in the 90’s is better exploited with the ERA-Interim forecasting system (which was state of the art 

one decade later) than with the forecasting system used at the time.  

Figure 2.1 shows the progress in NWP forecast skill from the ECMWF operational forecasting 
system (red line, top panel). The metric is the forecast lead time when the anomaly correlation 
drops below 80% when predicting the geopotential at 500hPa (Z500) in the Northern 
Hemisphere. The progress is slow but steady (about 1 day per decade). The skill depends very 
much on the seasonal cycle, and it is convenient to filter the seasonal cycle with a 12-month 
running mean (red thick line). Another way of filtering out changes in the intrinsic predictability of 
the atmosphere is to compare with a reference experiment given by forecasts initialized from the 
ERA-Interim reanalysis system (Dee et al., 2011), which uses a frozen model and data 



assimilation cycle (the one operational around 2006). The differences between operational and 
ERA-Interim show the impact of model and data assimilation development efforts. The 
observing system in the 90’s produces better skill when analyzed with a more advanced 
forecasting system (typical of the state of the art one decade later). Equally, increases in model 
resolution and continuous development are incorporated in the operational NWP system, which 
soon leaves ERa-Interim behind.   
To initialize NWP models, an accurate estimate of the complete atmospheric state is required.  
Observations from surface-based, airborne and space-based platforms are all used to help 
define this initial state.  Reliable error estimates of all observations are needed to estimate the 
accuracy of the initial state. The observational requirements for global NWP are based on the 
need to provide an accurate analysis of the complete atmospheric state and the Earth’s surface 
at regular intervals (typically every 6 hours). Through a “data assimilation” system, new 
observations are used to update and improve an initial estimate of the atmospheric and surface 
states provided by an earlier short-range forecast. The uncertainty in the initial conditions is 
generally captured by ensembles of data assimilations. 

The key atmospheric model variables for which observations are needed are: 3-dimensional 
fields of wind, temperature and humidity, and the 2-dimensional field of surface pressure.  Also 
important are surface boundary variables, particularly sea surface temperature, soil moisture 
and vegetation, ice and snow cover. Of increasing importance in NWP systems are 
observations of cloud and precipitation.  In the latter part of the medium-range, the upper layers 
of the ocean become increasingly important, and therefore, relevant observations of the ocean 
are also needed. 

The highest benefit is derived from observations available in near real-time; NWP centers  
derive more benefit from observational data, particularly continuously generated asynoptic data 
(e.g. polar orbiting satellite data), the earlier they are received, with a goal of less than 30 
minutes’ delay for observations of geophysical quantities that vary rapidly in time. However, 
most centers can derive some benefit from data that is up to 6 hours old. 

In general, conventional observations have limited horizontal resolution and coverage, but high 
accuracy and vertical resolution.  In situ observations over the ocean or from remote land areas 
can occasionally be of vital importance. Also, a baseline network of in situ observations is 
currently necessary for calibrating the use of some satellite data. Observations are more 
important in some areas than in others; it is desirable to make more accurate analyses in areas 
where forecast errors grow rapidly, e.g. baroclinic zones and in areas of intense convection, 
such as the warm pool in the tropical Pacific. 

2.1 Surface pressure and surface wind 

Over the ocean, ships and buoys provide observations with good frequency.  Accuracy is good 
for pressure and acceptable/marginal for wind. Coverage is generally good but marginal or 
absent over some areas in the tropics and the Arctic. The coverage in the tropical Pacific has 
degraded in recent years. Scatterometers on polar-orbiting satellites provide information on 
surface wind - with global coverage and acceptable horizontal and temporal resolution and 
accuracy. Scatterometers give information on both wind speed and direction, whereas passive 
microwave imagers provide information on wind speed only. 



Surface pressure is not observed by present or planned satellite systems except for: some 
contribution from radio occultation data and measurements of differential atmospheric optical 
depth for a gas of known composition such as oxygen. 

2.2 Sea surface temperature 

Ships and buoys provide observations of sea surface temperature of good temporal frequency 
and accuracy. Coverage is marginal or absent over some areas of the Earth, but recent 
improvements in the in situ network have enhanced coverage considerably. Infrared instruments 
on polar satellites provide information with global coverage, good horizontal resolution and 
accuracy, except in areas that are persistently cloud-covered. Here data from passive 
microwave instruments on research satellites has been shown to be complementary. 
Observation of the diurnal cycle is becoming increasingly important, for which present and 
planned geostationary satellites offer a capability. 

2.3 Ocean sub-surface variables 

In the latter part of the medium-range (~7-15 days), the role of the sub-surface layers of the 
ocean becomes increasingly important, and hence observations of these variables become 
relevant. In this respect the requirements of global NWP are similar to those of seasonal and 
sub-seasonal forecasting (see section 3). 

2.4 Sea State 

Observations of the sea state from ships have become available since the middle of the 
nineteenth century. These observations are manually made and concern wave height, period 
and direction of the wind sea and the swell part of the sea state. The coverage of these 
observations is marginal over large areas of the Earth. Although ship manual observations have 
a great historical value, the observations are of marginal accuracy. Increases in accuracy can 
only be expected when observations by humans are replaced by instruments such as a 
shipborne wave recorder. The introduction of these will also benefit the observation frequency 
which is presently every 3 to 6 hours. 

Moored buoy provide sea state observations of acceptable frequency (hourly) and acceptable 
quality. The buoys record the time series of the surface elevation which gives the frequency 
spectrum and, as a consequence, parameters such as wave height, peak period and several 
versions of mean period. Certain buoy types are able to give the directional wave spectrum, 
while buoys from the Canadian network produce estimates of maximum wave height, a 
parameter which is important for extreme sea states. 

The highest quality wave height observations are nowadays provided by altimeters on board of 
polar orbiters. Although the coverage is global the spatial and temporal resolution is marginal as 
only along track observations are available. Despite this, these observations have played a 
major role in the improvement of the physics and numerics of ocean wave models. A number of 
weather centers use the altimeter wave heights in their wave height analysis. 

Information on the low-frequency part of the two-dimensional spectrum can be obtained from 
Synthetic Aperture Radar (SAR) instruments. The accuracy is good, but horizontal and temporal 



resolution is marginal. These observations have been used in the wave analysis of a number of 
weather centers.    

2.5 Data assimilation in the tropics 

The Final Report of the Fifth WMO Workshop on the Impact of Various Observing Systems on 
Numerical Weather Prediction (Andersson et al., 2012) concluded: “Current global observing 
systems are heavily skewed towards mass observations over wind measurements, especially 
for the satellite components. And yet many studies presented at the workshop pointed to a 
higher than average impact of wind observations, both on a component and on a “per-
observation” basis. There is a need to invest in enhanced wind observations in the tropics and 
over the oceans especially.” 

A substantial fraction of the tropical large-scale variability can be explained by equatorially 
trapped waves; the equatorial waves coupled to convection can explain on average 60–70% of 
the error variance in the tropical atmosphere (Zagar et al., 2005). The largest part of this 
explained variance is represented by the equatorial Rossby (ER) modes, and a significant 
percentage pertains to the equatorial inertio-gravity (EIG) modes. Most likely, deep convection, 
acting as a generator of equatorial wave motion, is the dominant mechanism. 

To ensure that the observational information is assimilated mainly in terms of Rossby modes, 
initialization procedures and methods for generating geostrophically balanced increments have 
been developed. In the tropics a dominant relationship similar to geostrophy is lacking; the 
analysis here has thus traditionally been undertaken in the univariate fashion. Consequently, 
large-scale divergence fields, such as the Hadley and Brewer–Dobson circulations, are 
analysed nearly univariately. Since the Global Observing System in the tropics relies on mass-
field information, uncertainties in the analysed wind field are significant. Furthermore, large-
scale motion in the tropics cannot be considered without taking into account inertio-gravity (IG) 
waves (Browning et al., 2000). In addition, the change of sign of the Coriolis parameter at the 
equator gives rise to important types of large-scale non-rotational motion, which are absent in 
the mid-latitude atmosphere: the Kelvin and mixed Rossby–gravity (MRG) modes. Indeed, 
equatorially trapped Kelvin, MRG and equatorial IG waves have regularly been detected in 
observations since the 1960s. Observational studies (Wheeler and Kiladis, 1999) identified 
equatorially trapped wave structures in long-term satellite observations of outgoing long-wave 
radiation, a proxy for deep tropical cloudiness. The waves have been denoted the ‘convectively-
coupled equatorial waves’, as their presence in areas of moist convection implies an interaction 
between convection and the dynamics. In order to initialize these structures accurately, mass 
and wind information is required in the areas surrounding the equator, particularly in the tropical 
Pacific warm pool and surrounding areas. 

2.6 Data Withdrawal Experiment: Impact of Winds from Moored Buoys 

Traditionally, in-situ observations of surface pressure and wind field have played an important 
role in weather analysis and weather forecasting. Using data assimilation techniques, these 
observations provide information on the initial state of the forecast, while much can be learned 
from the validation of the forecast by means of these so-called conventional observations. 
Nowadays, however, we are facing a different situation because over the past 20 years weather 



forecasting centers have introduced a massive amount of satellite data in their analysis 
systems. The question now is whether in the presence of overwhelming amount of satellite 
observations the relatively small number of in-situ observations can still add information to the 
weather analysis in the Tropics. 

 
 

Figure 2.2 - Impact of withdrawing the wind information from the moored buoys in NWP experiments. 
Experiment ALL is the standard control experiment; experiment NoMoor is equivalent to ALL, but the wind 
from moored buoys is not used. (Top) Mean differences in analyzed 10m wind speed (ALL - NoMoor), for 
the period 20110101-20110315, showing that the moorings have a pronounced impact on the analyzed 
wind speed. (Bottom) Scatter index as a function of forecast lead time, verified against all tropical buoy 

data. This shows that the information from the moorings is quickly lost in the forecasts. 

In order to investigate this, a data denial experiment was performed in which all the pressure 
and wind vector observations from moored buoys in the Tropics were removed (Bidlot and De 
Chiara, in preparation). Analysis and forecast results from the data denial experiment were 
subsequently compared with results from the control experiment, i.e., an experiment which 
includes all the relevant observations from the Tropics, but has otherwise an identical set-up. 
Recently weather centers experience a dramatic decrease in the amount of TAO array 
observations that are received through the GTS. For this reason we had to go back to the year 
2011 to have a sufficient number of observations to do a meaningful experiment. Cycle 40R1, 
which is the latest cycle of the IFS, was chosen for the experimentation and analyses and 10 
day forecasts were produced for the period 1 January 2011 until 31 March 2011. The spatial 
resolution was 40 km (corresponding to a T511 truncation in spectral space) while in the vertical 
there were 91 levels.  



Figure 2.2 (top) shows the systematic difference between analysed surface wind speed from 
control and data denial experiments, averaged over a 2 1/2 month period. Differences are quite 
considerable, of the order of 0.4 m/s, and the use of buoy data leads to larger wind speeds in 
the analysis. It should also be clear from difference patterns where a number of TAO/TRITON 
moorings are located. This is particularly evident in the west Tropical Pacific. It may come as a 
surprise that removal of the buoy data in the Tropics has such a big impact on the wind speed 
analysis. It can be understood by realizing that the TAO array produces good quality wind vector 
observations on a frequent, hourly basis. They apparently can compete with the scatterometer 
observations on board polar orbiters as these visit the area where the buoys are located 
relatively infrequently. 

The impact on the wind speed and wave height scores in the Tropical area is, however, fairly 
limited. This is illustrated by Figure 2.2 (bottom), which shows the scatter index (normalised 
standard deviation of error) in forecast wind speed, obtained from a comparison with buoy wind 
speeds. The area is the Tropics. It is evident from this plot that the impact of the Tropical buoy 
data on the forecast scores for surface winds is already fairly small after one day in the forecast. 
This also follows from a verification of the forecast wind speed against the control analysis, 
although in this case there is impact until Day 2 of the forecast. The impression is that the 
Tropical analysis of wind is not very well-balanced at the initial time, and ingested information is 
lost rapidly due to initial shocks.  As already mentioned in the previous section, unlike the extra-
tropics, there is no dominant balance relationship similar to geostrophy. This imbalance is 
supported by the experience that in the first 12 hours of the Tropical forecast there are signs of 
spin-down in, for example, the average Tropical wind speed.  

Despite the fact that the weather analysis in the Tropics is relatively poor (hence more effort is 
needed to alleviate the problem with imbalance in the analysis) the in-situ observations of 
surface wind and pressure are considered to be of value for weather forecasting. In a coupled 
ocean-atmosphere context the observations are potentially of greater value, as parameters such 
as SST are quite sensitive to errors in the forcing wind field. 

3. Seasonal Forecasts  

3.1 Description of a Seasonal Forecasting System        

Good-quality seasonal forecasts with reliable uncertainty estimates are of great value to society, 
allowing institutions and governments to plan actions to minimize risks, manage resources, and 
increase prosperity and security. Human and economic losses that may be caused by adverse 
climate events can be mitigated with early warning systems (e.g. famine, epidemics) and 
disaster preparedness. Equally, adequate planning can aid the exploitation of favorable climate 
conditions. 

Seasonal forecasts predict variations in the atmospheric circulation in response to anomalous 
boundary forcing, changing significantly the probability of occurrence of weather patterns 
(Palmer and Anderson, 1994). Seasonal forecasting systems are based on coupled ocean-
atmosphere general circulation models that predict both the surface boundary forcing and its 
impact on the atmospheric circulation. The chaotic nature of the atmosphere is taken into 
account by issuing probabilistic forecasts based on an ensemble of coupled integrations.  



An added requirement for seasonal, and in general, extended-range forecast systems is 
correction for model biases. This step is required as forecast anomalies can easily be of the 
same magnitude as the model bias, and thus, can be overwhelmed by model errors. The bias 
correction of real-time forecasts is done by conducting a series of past seasonal hindcasts (also 
referred to asa reforecasts), which in turn requires initial conditions for a historical period 
(typically 15-25 years), usually obtained from reanalyses. The reforecasts are also needed for 
skill assessment for the seasonal forecast system that needs to be conveyed to the user 
community.  

 

 
Figure 3.1.Progress in the seasonal forecast skill of the ECMWF operational system since it became 

operational around 1996. The yellow bar shows the relative reduction in mean absolute error of forecast 
of SST in the eastern Pacific (NINO3) integrated over the 1-6 months lead time.  Contribution from model 
development (blue bar) and ocean initialization (red bar) are equally important. Developments in ocean 

and atmosphere models also contribute to the ocean initialization. 

Of special importance for seasonal predictions are the variations of the tropical SST in the 
Pacific sector associated with El Niño Southern Oscillation (ENSO), and is the underpinning of 
operational seasonal prediction efforts. SST variations associated with ENSO alter the tropical 
convection and associated changes in heat sources lead to changes in atmospheric circulation. 
The importance of ENSO in seasonal forecasts is further enhanced by its relatively high 
potential predictability (Zebiak and Cane, 1987), which is largely inherent equatorial wave 
dynamics. Thus, the predictability of climate variability on seasonal time-scales depends 
critically on the adequacy of initial conditions of the ocean.  See supplementary figure S1 for an 
illustration of the equatorial wave dynamics and impact on SST anomalies. However, linear 
wave dynamics is insufficient to predict the SST outcome, as can be seen in the same figure: 
not every eastern propagating Kelvin wave leads to an SST anomaly of the expected sign. 
Figure S1 also shows the wealth of temporal and spatial scales of the SST; especially 
noticeable is the tropical instability waves (TIW) activity in the Eastern Pacific. 

Since seasonal forecasts became operational, their skill has been slowly but steadily increasing. 
The improvement in skill is equally attributed to better initialization of the ocean and improved 



coupled models, as shown in Figure 3.1 from Balmaseda et al. (2010). Improved initialization 
reflects not only the contribution of the ocean observing system, but also improved atmospheric 
surfaces fluxes, and better exploitation of the observations by more advanced data assimilation 
methods and models.  

Seasonal forecasts use lower resolution models that those in NWP, mainly because the length 
of the integration, the number of ensemble members and the need for bias correction and 
calibration adds to the computational cost. The atmospheric model has a typical resolution of 
0.5-1 degree in the horizontal, with 60 to 90 vertical levels. The ocean resolution is typically 1 
degree (with equatorial refinement), although in the latest Met Office seasonal forecasting 
system the ocean resolution is 0.25 degrees (at expense of reducing the reforecast data set). 
The forecast lead time is typically 6-7 months, sometimes extended up to 12 months. The real-
time forecasts require about 40-50 ensemble members. The reforecasts span a period of 
approximately 30 years, with hindcasts initialized every month using a reduced ensemble (~11-
15 members). In total, about 200 years-worth of coupled model integration years are needed for 
a seasonal forecast at 7 months lead time initialized from a single calendar month. Or in other 
words, 2400 years-worth of coupled integrations are needed for seasonal forecasts initialized 
each month.   

Seasonal forecasts use both the Near Real Time (NRT) data stream for initialization of real time, 
and the Behind Real Time (BRT) data stream in the reanalyses needed for the calibration data 
set. BRT data are also used for verification. 

3.1 Ocean Initialization  

The simplest way of providing initial conditions is to run an ocean model forced with observed 
winds and fresh-water fluxes from atmospheric reanalyses and with a strong constraint to 
observations of SST. Such a 0th order ocean data assimilation system has been shown to 
generate realistic subsurface ocean structures (Luo et al., 2005; Kumar et al., 2013) in the 
equatorial Pacific. Although the information about wind forcing (wind stress or surface wind) and 
SST is essential to initialize seasonal forecasts, it is often not enough. The quality of the models 
and of surface forcing is not sufficient to provide an accurate estimation of the subsurface ocean 
state. By assimilating subsurface ocean observations it is possible to reduce the uncertainty in 
the ocean estimate and improve seasonal forecasts. See supplementary material for a summary 
of the current ocean observing system used in operational seasonal forecasts. 

Figure 3.2 from Balmaseda and Anderson (2009) shows the contribution of ocean and 
atmospheric observations to the skill of seasonal forecasts, as well as the individual impact of 
different ocean observing systems.  Their results highlight the importance of the surface wind 
information, and they also show than in the equatorial Pacific all the ocean observing systems 
contributed to the skill of seasonal forecast. These experiments were conducted with the 
previous ECMWF seasonal forecasting system (S3), and have been revisited with the new S4 
(see below), as well as with a variety of other operational systems (see WP5). See also section 
7.4 for a discussion on limitation of this methodology. 

Aside from winds and SST, subsurface temperature observations are the next most important 
variable for the initialization of seasonal forecasts in the tropical Pacific. Salinity observations 



are also important (Yin et al 2011), especially in the mixed layer, and because they contribute to 
the assimilation of temperature data (by providing better constraints for density field. Altimeter-
derived sea-level observations can also be helpful to constrain the upper thermal structure by 
projection onto the baroclinic ocean density structure. In order to obtain an accurate projection, 
the model vertical density structure needs to be reasonably realistic, i.e., in-situ observations of 
temperature and salinity are needed. The importance of altimeter-derived data is increasing with 
increased ocean model resolution. The assimilation of altimeter sea level needs additional 
information about the geoid which can be derived from gravity missions. 

 

 
Figure 3.2 - Impact of observations in forecast skill for different regions in table above, as measured by 

the reduction in mean absolute error for the forecast range. (Left) ocean observations (OCOBS), 
atmospheric observations (ATOBS) and both, for the forecast range 1-3 months, period 1987-2008. 

(Right) Impact of Argo, altimeter and moorings for the period 2001-2006. Results illustrate the importance 
of wind information, and also show that in the Equatorial Pacific all observing systems contribute to the 

skill. 

Although the emphasis for initialization of seasonal forecasts is in the upper thermal structure 
(the upper 300m are more likely to influence the atmosphere on seasonal time scales), it does 
not mean that only observations of temperature in the upper ocean are needed. A full profile 
rather than a truncated one also makes a difference in the resulting stability of the water 
column. Equally, the upper thermal structure is better initialized with T/S profiles rather than only 
T (Troccoli et al., 2002; Ricci et al., 2005). However the assimilation of temperature and salinity 
separately (as it is common in variational assimilation methods) may induce problems, 
especially when the first guess salinity is lower than the observations, and the water column is 
not very strongly stratified.  

There is large uncertainty in the fresh water flux (precipitation, evaporation and river runoff), 



affecting the surface salinity and mixed layer properties. It is probably the largest source of 
uncertainty in the estimation of salinity in the upper 100m. Information about Sea Surface 
Salinity (SSS) from either in-situ measurements close to the surface or from satellite (Aquarius 
or SMOS) can be useful (TPOS 2020 WP9 Lindstrom). 

Aside from the biochemistry applications, time and spatially varying ocean color can be used as 
forcing fields of the ocean models to specify the depth for solar penetration. Ocean model 
simulations exhibit high sensitivity to ocean color. So far most of the ocean color products 
consist of climatologies and are not available in real time. A Level 4 (L4, see Appendix) time 
dependent ocean color maps, delivered in NRT or BRT will be useful. 

Assimilation of altimeter-derived sea level (as opposed to sea level anomalies) needs 
information from the geoid. This is obtained from gravity missions. In addition, gravity missions 
can provide bottom pressure information, which can be used globally to constrain the non-steric 
part of global sea level variations. Gravity-derived variations of the global mass field are also 
useful for verification of ocean reanalyses (Balmaseda et al 2013a), BRT L4 data is desired. 
Bottom pressure also has the potential to constrain the barotropic mode; however, more 
experience is needed.  

3.3 Weakness of ocean data assimilation 

The assimilation of ocean observations in the equatorial wave-guide remains challenging, in 
spite of progress on data assimilation methods. Preliminary results from the Ocean ReAnalysis 
Intercomparsion Project (ORA-IP) show large spread in meridional mass and heat fluxes at the 
Equator (Valdivieso et al., in preparation). Observing system experiments (OSEs) show very 
little impact of the different observing systems right at the Equator (see WP5), which is 
indicative of either redundant information or poor assimilation methods.  The relative impact of 
TAO and Argo at the equator is comparable, although varies among the data assimilation 
systems.  

Fig 3.3 shows results from OSEs conducted with the ECMWF ORAS4 system, where Mooring, 
Altimeter and Argo are withdrawn from the ocean analyses, once at a time. The figure shows 
the fit (rms error) of the first-guess to mooring observations during the 10-day assimilation cycle 
(also called departures) in the Eastern Pacific (EQ1) and in the Western Pacific (EQ3). Since 
the observations have not yet been assimilated (the comparison is done just before the 
analysis), they can be considered fairly independent. In both Eastern and Western Pacific 
withdrawing the moorings increases the rms error. The assimilation of Argo does not seem to 
improve the fit to the moorings. In fact, in the western Pacific, the fit to the moorings is degraded 
when Argo is assimilated. These results suggest either that moorings and/or Argo provide 
different information (for instance, if they are at different locations and there is a lot of spatial 
structure) or/and that there are problems with the assimilation system. Curiously the assimilation 
of moorings does not degrade the fit to Argo (not shown).  

There are several reasons for the small impact of observing systems at the Equator: i)  it is 
difficult to constrain large scale biases with short spatial decorrelation scales (most of the 
assimilation methods only use one decorrelation scale) and ii) the equatorial dynamical balance 
needs longer time scales than the typical ocean assimilation cycle (1-to-10 days). Similar 



problems to those in the equatorial region are seen in coastal boundary current regions, where 
there is no dedicated observing system for the time-being. In the future, both equatorial and 
boundary current regions may become adequately sampled by Argo (see design plans in TPOS 
2020 WP10). It can be argued that the observational needs are larger in the areas where model 
and data assimilation are poor, although it can also be argued otherwise. 

 

 
Figure 3.3 - Fit to mooring observations (root mean square error) in the Eastern Pacific EQ1 (top) and 

Western Pacific  EQ3 (bottom) from the 10 days forecasts  using the ECMWF ORAS4 data assimilation 
system (black), and in equivalent data withdrawal experiments NoArgo (blue), NoMoor(pink) and NoAlti 
(green), where Argo, Moorings and altimeter have been respectively removed. EQ1 (150W-90W, ±5o), 

EQ3 (150E-170W, ±5o). The verifying mooring observations have not yet being assimilated in any of the 
experiments. Withdrawing the moorings from the analyses degrades the fit of the 10-day forecast, in both 

Eastern and Western Pacific. Argo does not improve the fit to the moorings. On the contrary, in the 
Western Pacific withdrawing Argo improves the fit to the moorings. This can be interpreted as i) Argo and 

moorings providing different information or ii) sub-optimal data assimilation systems. 

In summary, although the information from ocean observations is essential for initialization of 
seasonal forecasts, its extraction is not always straight forward. There is evidence that the 
current data assimilation systems are not exploiting the full potential of the observations (see 
Figure 3.3). Challenging areas are the Western Boundary Currents (WBC) and the Equatorial 
regions, where the information is quickly lost.  Constraining the density field by separate 
assimilation of temperature and salinity remains difficult, and so is the assimilation of altimeter 
sea level (both because the methods for projection into subsurface density and because the 
need of external information in form of geoid or MDT). It is expected that most of these 
problems will be solved by future developments in data assimilation methods and reduction of 
model error.  



3.4 Model and Data Assimilation Development 

Continued deficiencies in ocean and atmospheric models, and their corresponding data 
assimilation systems have led to ongoing developmental efforts. Model and data assimilation 
development efforts hinge on observational data sets for (a) validation of model simulations to 
document biases, and (b) testing and implementing new parameterization and data assimilation 
schemes. Although model parameterization often falls under the purview of focused field 
programs that target a specific process, sustained observations are helpful to evaluate model 
performance under various climate regimes. A good example is parameterization of stratus 
cloud decks over the western coast of continental areas (such as the western coast of 
equatorial South America), that are often associated with warm biases in the ocean models. 

 Another example of a familiar model error is the equatorial cold-tongue in coupled models. The 
attribution of the error still remains unresolved. From the ocean perspective, the cold tongue is 
usually associated with too strong zonal wind stress and/or too much poleward heat transport by 
the TIW. This could be due to errors in the atmospheric model (deficient resolution or others). In 
ocean-only simulations, the strong zonal wind stress can be mitigated by taking into account the 
ocean currents when deriving wind stress from atmospheric analysis winds. But this itself can 
lead to overcompensation and masking of the errors (there is some inconsistency in this 
formulation, since the atmospheric analysed winds -produced in uncoupled mode- have not 
seen the ocean currents). Having measurements of the TIW activity level and heat transports, 
as well as in-situ measurements of surface stress and winds is essential to solve this persistent 
problem. 

  

 
Figure 3.4 – Sub-surface currents for moorings are very valuable to verify ocean reanalyses and develop 

the data assimilation system. 

Ocean currents from moorings have proved very useful in the development of data assimilation 
(see Figure 3.4). Often the assimilation of density information can lead to spurious circulations, 
especially at the equator. By looking at the impact on the equatorial undercurrent it is possible to 
assess if the data assimilation is adequately balanced. This has led to the development of 
balance constraints for equatorial velocity (second order geostrophic balance, Burgers et al., 



2002), and the pressure bias correction suggested by Bell et al. (2004). This latter appears 
essential to obtain good velocity fields (Balmaseda et al., 2007). The scheme is quite sensitive 
to the choice of some parameters, which are tuned by using the currents from moorings.  

Another method for validating the ocean data assimilation system is by monitoring error growth. 
It is easy to overfit the data if the only criterion is the fit of the analysis to the observations. More 
important is how the information is retained (or how the error grows during the very short 
forecasts, before the results get contaminated by model error). To this end, and in order to 
obtain reliable statistics, the sampling of the verifying observations should be homogeneous in 
space and time. The moorings provide an excellent data set for verification, since they 
guarantee similar number of observations at the same locations.   

Sea level from tide gauges also provide valuable independent information for validation of 
ocean reanalyses, with the added benefit that some of them span long time-records. These are 
particularly important for evaluating the quality of the ocean re-analyses prior to the satellite 
period (Chepurin et al., 2013). Surface currents derived from the combination of altimeter and 
drifting buoys, such as the OSCAR product (Bonjean and Largelof, 2002) are also used for 
reanalyses verification.  

It can be argued that for model and data assimilation development it is not necessary to have a 
continuous and permanent observing system in place. However, the errors of model and data 
assimilation are very flow dependent.  Having a reduced data set for model/data assimilation 
development can lead to over-tuning algorithms for some case studies, which may then not be 
suitable for other cases. Numerical models, forcing fluxes and observations are also changing, 
and there is always the need to test new components with the most recent data (for example, it 
would be difficult to test the assimilation methods for altimeter without a reasonable coverage of 
in-situ observations). 

3.5 Bias correction, verification and skill assessment 

Seasonal forecasts require bias correction as the anomalies one seeks to predict can often be 
as large as model biases and can easily overwhelm the signal one strives to predict. The first 
order calibration is the a-posteriori removal of the mean bias, which depends on the lead time 
and on the seasonal cycle (Stockdale, 1997). This strategy assumes that the model bias is 
stationary, but this is not always the case. Figure 3.5 from Kumar et al. 2012 shows that the bias 
depends on the lead time and the seasonal cycle, a dependency that is accounted for in the a-
posteriori removal of the bias. This figure also shows a non-stationary behavior in the bias, with 
a tendency towards colder (warmer) bias before (after) 1999, contrary to the assumptions in the 
a-posteriori bias correction. This can lead to complications in bias correction procedures and 
degradation of forecast skill.  Kumar et al. (2012) discuss how changes in the observing system 
possibly led to non-stationarity in the forecast bias, and sub-optimal forecast skill.  

The dominant change in the forecast bias in the CFSv2 system analyzed by Kumar et al. (2012) 
occurred around 1999, coinciding with the assimilation of AMSU data. Although some of the 
shifts in the reanalyses time-series can be attributed to the assimilation of AMSU, there are 
others that may be related to real shifts in nature (Zhang et al., 2012). Long reference time-
series of good quality observations representative of the large scale circulation are therefore 



needed to be able to distinguish between spurious and real signals. See the section 5 on 
reanalysis for further discussion on this topic.  

 

 
Figure 3.5 - Time evolution of the SST forecast bias in the NCEP CFS version 2. The figure shows the 

bias at 1-month and 8-months lead time, and it illustrates the non-stationarity of the bias (from Kumar et 
al., 2012). 

For bias-correction and verification of seasonal forecasts, gridded maps (usually monthly 
means, 1x1 degree) of relevant variables (winds, precipitation, SST, OLR, surface fluxes etc.) 
are needed. These gridded fields are usually the results of post-processing, either via model-
based reanalyses or other gridding algorithms. The quality of the seasonal forecasts will be 
influenced by the length and the quality of these products. The accuracy of these products is not 
considered the limiting factor for the forecast quality (with some exceptions such as 
precipitation, T2m over land, surface fluxes). The length of the temporal record and the stability 
of the error can be a reason for concern, even for variables like SST. Ideally, one would like 
records spanning a minimum of 30 years with stable errors and free of spurious variability and 
trends. These requirements are even stronger when it comes to the seasonal forecasts of 
extreme events. 

3.6 Summary of seasonal forecasts data needs 

(See appendix for an explanation of the acronyms used in this section). 

Initialization  

� Surface winds/wind stress (L4), SST(L2-L3-L4); subsurface temperature/salinity (L2, L2-
QC)  and sea-level altimeter (L2, L2-QC) are essential variables for initialization;  

� Equatorial wave-guide needs intense sampling, which currently is only provided by 
moorings, but could be better sampled with the new Iridium Argo floats which avoid drift 
by staying at the surface for only a few minutes; 

� Increased horizontal resolution model initialization needs high spatial resolution 
altimetry; 

� SSS, ocean color, heat, freshwater, and turbulent kinetic energy surface fluxes (L3-L4); 
� Gravity derived geoids and bottom pressure complementary to altimeter (L3-L4);  
� Delivery in two streams: NRT (no more than 24 hours delay) and QC BRT (with delays 

ranging from a few days to update the current reanalyses, to years or decades, to be 
used in future reanalyses and verification). 



Model and Data Assimilation Development 

� Independent data for validation of ocean data assimilation and models: current profiles 
at the Equator (provided by moorings, L2-QC, L3); sea surface currents (SSC, L4); sea 
level from tide gauges. Long records. Time series of  L2-QC, L3; 

� Quality controlled flux data from reference sites (wind, wind stress, long and shortwave 
radiation, relative humidity, surface temperature, rain gauges). Long time series of L2-
QC, L3; 

� Controlled profiles of in-situ surface and subsurface data for validation of ocean-
atmospheric reanalyses and models. Long time-series of L2-QC, L3; 

� Processed gridded products of surface fluxes. Long records of L3-L4; 
� Indonesian Throughflow transports (heat, salt, volume) time-series; 
� Equatorial transports (heat, salt, volume). Time series. 

Bias correction, Verification and Skill Assessment 

� Long (>30 years) stable ocean-atmospheric and SST reanalyses for initialization of 
hindcasts; 

� Long (>30 years) stable records of end-user related variables (such as surface winds, 
precipitation, surface temperature, sea-level pressure). Other indirect meteorological 
variables that can help the calibration and interpretation of forecasts are useful (Z500, 
OLR).  (L3-L4);  

� Long records of L2-QC, L3 variables in reference sites; 
� Continuous delivery BRT, preferably with delays no longer than 1-3 months, for prompt 

verification. 

4. Sub-seasonal forecasts  

Sub-seasonal forecasts are currently produced operationally at various major forecasting 
centers. Configurations of models range from an uncoupled atmospheric model to coupled 
ocean-atmosphere models (Table 1). Oceanic observations required for this application may be 
similar to those for medium-range and/or seasonal forecasts, but there are some differences. 
Regardless of whether a model is coupled or uncoupled, the sub-seasonal forecast requires 
ocean analysis (SST or sub-surface analysis) and observations of influence to be consistent in 
quality over a long period, since the sub-seasonal forecasts also need bias correction based on 
re-forecasts similar to that for their seasonal counterparts (Section 3). The poor time-
consistency of the ocean observations and analysis may hamper a proper calibration and fail to 
provide opportunity for gains on forecast skill. Furthermore, the sub-seasonal forecasts may be 
performed with models at a higher resolution (up to ~30 km for the ECMWF monthly forecast 
system) than seasonal forecasts and the higher resolution models ideally need with higher SST 
conditions. Hence the incentive to use higher-resolution SST boundary/initial conditions 
requiring higher-resolution observations by a combination of in-situ and satellite measurements. 

There is some phenomenological rationale for the requirement of oceanic observation for the 
sub-seasonal forecast, the primary one may be the Madden-Julian Oscillation (MJO). The MJO 
is the pronounced variability in an intraseasonal time-scale (30-90 days), accompanying 
coherent deep convection and large-scale atmospheric circulations in the tropics. The MJO has 



a strong influence on tropical weather as well as extra-tropical weather through so-called 
teleconnections (Cassou, 2008; Mori and Watanabe, 2008; Vitart, 2013). Better representation 
of the MJO and the teleconnections should lead to better skill of sub-seasonal forecasts (Vitart 
2013). Many modeling studies have been conducted to evaluate impacts of ocean coupling in 
predicting MJO, and indicate that the ocean coupling contributes to improve a representation 
and forecast skill of MJO (e.g., Klingaman and Woolnough, 2013; Woolnough et al., 2007). 
Meanwhile in-situ and satellite observations have revealed that the MJO is related to the ocean 
temperature and ocean salinity variations (Anderson et al., 1998; Grunseich et al., 2013; 
Matthew et al., 2010). Given that the MJO is a coupled atmosphere-ocean phenomenon as the 
many sensitivity experiments have suggested, better analysis of ocean states should bring 
better MJO forecasts and sub-seasonal forecasts, at least in principle.  

In the traditional ocean data assimilation for seasonal forecasts, the main focus is on relatively 
large spatial scale and low-frequency variability (i.e. oceanic equatorial Kelvin and Rossby 
waves and ENSO, Indian Ocean Dipole (IOD)), while the future sub-seasonal forecasting would 
shed light on the small-scale atmosphere-ocean interaction over tropical instability waves or 
ocean fronts (Small et al., 2008; Kelly et al., 2010). In the foreseeable future, oceanic 
observations with finer spatial and time resolutions would be required in order for these 
phenomena to be analyzed and initialized. Although an oceanic contribution to improving sub-
seasonal forecasts has been recognized as mentioned above, an evaluation of the observing 
system from the sub-seasonal forecast perspective has never been conducted and a research 
effort should be made to explore the benefit of oceanic observations for sub-seasonal forecasts 
in the near future. 

Table 1 - Operational sub-seasonal prediction systems and utilized ocean observations (as of April 2013). 
-------------------------------------------------------------------------------------------------- 
Institutions Resolution  Ocean coupling   Ocean observations 
ECMWF TL639L62 (day0-10)  Yes   1,2,3,4,5,6 

TL319L62 (day10-32) 
JMA  TL159L60   No   1,2,3,4 
UKMO N216 (~50km)L85   Yes   1,2,3,4,5,6 
NCEP  T126L64   Yes   1,2,3,4,5,6 
EC  T63L31/T63L35  Yes   1,2,3,4,5,6 
CAWCR T47L17   Yes   1,2,3,4,5,6 
KMA  T106L21   No 
CMA  T63L16   No 
CPTEC T126L28   Yes   1,2,3,4,5,6 
HMCR  1.1x1.4 deg., L28  No 
------------------------------------------------------------------------------------------------------ 
1: Mooring buoy (in-situ, TAO/TRITON/PIRATA) 2: Argo float (in-situ) 
3: Drifter buoy (in-situ)    4: Ship (in-situ) 
5: Altimeter (satellite)                6: Infrared/Microwave (satellite) 

 
 
 



5. Reanalyses 

As discussed before, extended-range predictions require calibration of real-time forecast 
anomalies to reduce the impact of model errors. This is achieved by running the forecast system 
back in time and developing a database that can be used for quantifying the statistics of model 
biases, against which real-time forecasts are bias corrected. Running the extended-range 
forecast system back in time, generally referred to as the reforecast, requires initialized ocean 
forecasts, and availability of ocean analyses for the initial conditions. This is one of the reasons 
for conducting the ocean reanalysis going back in time, and which are updated on a periodic 
basis either after sufficient advancements in models and assimilation systems have been made 
or when new sets of observations are added in the historical data bases through data mining 
efforts or improved quality control methodology. Reanalyses (both for the ocean and 
atmosphere), therefore, are integral components of real-time forecast systems, while at the 
same time, are extensively used for climate monitoring efforts to place the evolution of the 
current climate system into a historical context. 

Reanalysis efforts, although do not explicitly pertain to real-time ocean and atmospheric 
observing systems, do provide guidance on (a) the influence of the changing observing system 
on the analyses and forecasts, and (b) a means of testing the influence of various observing 
platforms on extended-range forecasts through Observing System Experiments (OSEs), and 
are briefly discussed next.  

Observing systems are in a state of continual evolution either due to development of new 
technologies, for example, Argo, or due to the phase-out of older observing systems, such as a 
decline in XBTs (see Figure S3). Such changes in observing systems, even if intended to 
improve the quality of ocean analysis, can also lead to discontinuities when changes in the 
ocean observing system interact with the data assimilation. An example could be that as the 
density of observation increases, the ocean analysis is drawn more towards the observations 
away from the assimilation system’s initial guess state (which is based on the model forecast). If 
the initial guess state (that is obtained by a forward integration of the assimilation model has 
biases), then a sudden appearance of a new observing system in a data void region can create 
a spurious jump in the analyses from a model state towards in situ observations. Similar 
discontinuities could occur due to changes in the QC systems or changes in the correction to 
raw observations, such as XBT fall rate correction (Wijffels et al., 2006), or the reported 
pressure sensor biases in the Argo floats (Lymann et al., 2006). Influence of such changes in 
the reanalysis can subsequently affect the forecast biases, so invalidating one of the 
fundamental assumptions of forecast calibration (Figure 3.5). Such discontinuities in the 
historical analysis, and their influence on the reforecasts, also provide valuable lessons for the 
real-time analysis of the ocean state that can occur due to ongoing changes in the observing 
system, and care needs to be taken in the design and evaluation any of tropical Pacific 
observing system. 

Reanalyses also provide an opportunity for conducting OSEs, whereby influence of a particular 
observational platform on ocean analysis and subsequent forecast skill can be assessed. The 
importance of OSEs in the context of TPOS 2020 is of obvious importance for the design of 
observing system to provide adequate initial states for operational forecasting systems for 
different time-scales. Reanalysis based on OSEs are also a means of quantifying the accuracy 



requirements for the observing system in the context of forecasts. Although OSEs represent a 
computationally expensive exercise, primarily due to requirements of doing an extensive set of 
reforecasts to obtain results that are statistically significant (for more discussion see white paper 
5), it is recommended that a robust OSE activity involving multiple operational forecasting 
centers should be maintained to inform the design and assessment of the current and future 
configuration of the tropical Pacific observing system. In summary, although the reanalysis 
efforts may not be of direct relevance to the real-time observing systems, they encompass a set 
of tools that are of value for assessing and informing the design of the tropical Pacific observing 
system. 

 

a)

 

b) 

 

c) 
ERA-Interim Tropical Pacific  
Zonal Wind Stress 

 

d) 

 

Figure 5.1 - a) Mean zonal mean stress from Era-Interim (EI) (1990-2011). b) Linear trend of EI zonal 
mean stress for the same period. c) Time series of EI zonal wind stress in the Tropical Pacific and d) EI 

and TAO zonal wind at 0N-180E. 

Atmospheric reanalyses are undoubtedly a great asset for climate research and forecasts 
applications. They are so widely used that often are taken as truth. Atmospheric reanalyses, as 
well as the oceanic reanalyses, can present spurious signals due to changes in the observing 
system (Zhang et al., 2012; for instance, see section 3 above). When changes in the observing 
system coincide with real changes in climate variability, the true and spurious signals are 



difficult to disentangle. This is the case for the interesting changes in tropical Pacific winds after 
the 1998-1999 La Niña event. 

Figure 5.1 shows the maps of zonal wind stress from ERA-Interim (mean and linear trend, top), 
and corresponding time-series averaged over the tropical Pacific. Pronounced changes can be 
seen in the zonal wind, consistent with changes in the gyre circulation. The time-series shows 
that the trend is punctuated by intense easterly episodes (1999, 2006-2007, 2009-2010). After 
2009 (with the end of Quickscat) no scatterometer winds are assimilated in ERA-Interim. 
Establishing if the changes in the reanalysis wind stress are robust is vital for the understanding 
and prediction of climate. For instance, Balmaseda et al. (2013) and England et al. (2014) argue 
that wind variability is instrumental for the ocean heat uptake. Backscatter from altimeter also 
detected some extreme signals in the surface winds around 2010, but doubts were cast about 
the calibration (Abdalla, personal communication). The record from scatterometer winds is often 
too discontinuous to provide a reliable assessment. The TAO moorings offer a more consistent 
picture, although of limited spatial extent (De Boisseson et al., in preparation). The implications 
for the observing system are obvious: there is a clear need for good quality reference long time 
series, stable in time and representative in space. Spatial sampling to obtain this 
representativeness needs to be evaluated.   

6. Future Developments  

6.1 Decadal predictions 

Decadal forecasting is a rapidly evolving field. External forcing influences the predictions 
throughout, but the initial state influenced by natural variability also plays an important role in 
the evolution of coupled system on shorter lead time, e.g., in the first six-to-nine years. Hawkins 
and Sutton (2009), Meehl et al. (2013) discuss the importance of initialization to produce time-
evolving predictions of regional climate. The analysis of multi-model ensemble results 
suggesting that some aspects of decadal variability like the mid-1970s shift in the Pacific, the 
mid-1990s shift in the western Pacific, and the early-2000s hiatus, are better represented in 
initialized hindcasts compared to uninitialized simulations. The difference between initialized 
and non-initialized forecasts becomes more evident when using the multi-model ensemble than 
in any individual forecasting system. The tropical Pacific appears as one of the regions with real 
predictive skill at 1-2 year lead times arising from the initialization of the ocean (Pohlmann et al., 
2013). 

Some of the decadal forecasting systems rely on information from existing atmospheric and 
ocean reanalyses (the later produced for seasonal forecasts) for initialization. This information is 
used directly, by nudging the coupled model (anomaly or full field) or by forcing an ocean model 
with atmospheric fluxes. Some systems use a specific data assimilation system designed for 
decadal forecasts, such as the Met Office system (Smith and Murphy, 2007). A key difference of 
initialized decadal predictions from initialized predictions on shorter time-scales is the need for 
ocean observations into the deeper ocean.  

From the Tropical Pacific perspective, the observational needs for decadal forecasting are 
similar to those of seasonal, except the need for even longer and stable observational records is 
stronger, both for initialization and verification. At decadal timescales the deeper ocean (below 



500m) also plays a role and observations up to 2000m are considered important. Results from 
synthetic observing system experiments suggest that even observations below 2000m are likely 
to play a role, especially in the prediction of the Atlantic Meridional Overturning Circulation. 
Initializing the large scale modes of decadal variability such as the PDO may be important.  

6.2 Coupled forecasting Systems: thermal and dynamic coupling 

Whenever the term coupled ocean-atmosphere system is used, the thermodynamic coupling in 
the tropics springs to mind, where the atmosphere responds to the SST values and its 
gradients. And indeed, the benefits of the ocean-atmosphere thermal coupling in the tropics for 
MJO and NWP prediction have been demonstrated (De Boisseson et al. 2012, Janssen et al. 
2013, for instance). However, there are other processes in the air-sea interaction related to the 
momentum transfer that have potential impact on the resulting SST. 

 Evidence is growing that ocean wave dynamics plays an important role in the evolution of 
currents and temperatures of the upper ocean, suggesting that it makes sense to develop a 
tightly coupled ocean-wave, ocean circulation model. The first indication came from the 
theoretical work of Craig and Banner (1994) and the experimental work of Terray et al. (1996) 
that highlighted the prominent role of breaking waves in the upper-ocean mixing of momentum 
and heat. Monin-Obukhov similarity is based on the balance between production and dissipation 
of turbulent kinetic energy and breaking waves generate so much additional turbulence that 
large deviations from similarity occur resulting in enhanced mixing. Additional sea state effects 
that are relevant for the upper ocean are the generation of turbulence by Langmuir circulation 
(McWilliams and Restrepo, 1999; Grant and Belcher, 2009) and the Stokes-Coriolis force 
(Hasselmann, 1970; McWilliams and Restrepo, 1999). Furthermore, although it is well-known 
that ocean waves experience refraction in the presence of spatially uniform currents, it is 
perhaps less well-known that by Newtons third law this implies that there will be a sea-state 
dependent force exerted on the ocean (Garrett, 1976). In return, it should be emphasized that 
ocean circulation also affects the sea state, through for example current refraction and through 
Doppler shifting. In an inhomogeneous current system the refraction may lead to focusing of 
wave energy, triggering the generation of freak waves. 

The development and validation of a coupled ocean, ocean-wave, and atmosphere system is a 
very interesting development, and opens the door to better exploitation of the observations. 
Data on the ocean and atmosphere boundary layer, as well as on sea-state, are of vital 
importance in order to validate and further develop these coupled systems. An example of the 
use of in-situ data in the development of a mixed layer model, including sea state effects, is 
given in Janssen (2012). 

6.3 Coupled Data Assimilation        

A recent focus for development is the implementation of coupled ocean-atmosphere-land-sea 
ice data assimilation (CDA) systems which are expected to improve forecasts at various time 
ranges (from medium range out to seasonal and decadal). These developments, initiated with 
the weakly coupled reanalyses at NCEP (Saha et al., 2010), are gaining momentum at different 
operational and research centers (Met Office, ECMWF, BMRC, JMA-MRI, NASA). Observations 
of the air-sea interface are crucial to better understand the important coupled processes which 



should be represented in the CDA systems. Observations in the boundary layers of both the 
atmosphere and ocean can help to constrain these coupled processes in this important area. 

CDA is an important approach to improving the forecast skills for the phenomena in which the 
air-sea interaction plays an essential role. Fujii et al. (2009) demonstrated that distribution and 
variability of precipitation in the tropics are improved in their weakly CDA run, in which ocean 
observation data alone is assimilated into a coupled model, compared to an AMIP run (i.e., a 
free simulation of the atmospheric model using the observed SST temperature). They found that 
the negative feedback between the change of SST and atmospheric convective activity is not 
properly represented in the AMIP run due to the prescribed SST, but it is recovered in the CDA 
run (see the negative correlation between SST and precipitation around the Philippine Sea in 
the CDA run (see Figure 6.1). They also showed that the negative feedback improves the 
precipitation fields and atmospheric circulations.  

 

 

Figure 6.1 - Maps of the Correlations between SST and precipitation in summer (June-August) calculated 
from (a) CMAP and the gridded SST data in JMA, (b) the weekly CDA run, (c) the AMIP run (adjusted 

from Fujii et al., 2009). 

A few international meetings have taken place to discuss progress in this area, one of which 
was organized jointly by WGNE and GODAE OceanView in March 2013. A series of white 
papers are being developed following that meeting and the current status of those is described 
at www.godae-oceanview.org/outreach/meetings-workshops/task-team-meetings/coupled-pre-
diction-workshop-gov-wgne-2013/white-papers. 

It is envisaged that in the near future the SST analysis and initialization will be carried out with 
such CDA systems. L2 SST bias-corrected data will become necessary (as opposed to using a 
gridded L4 SST product), frequently enough to be able to represent the diurnal cycle. 

One of the most challenging aspects of CDA is the formulation of the error covariance between 
the variables involved in the air sea interaction. Balance relationships between variations in the 
ocean mixed layer and in the atmospheric boundary layer are needed. These can be obtained 
from model integrations, but verification data are needed. From this perspective, ocean and 
atmosphere observations collocated in a single column are considered very valuable. No 
systematic studies have been carried out as yet to assess directly the impact of tropical moored 
buoy data on these systems. However, the tropical moored buoys are expected to provide a 
very useful input to develop and improve these coupled systems. 

 



7. General considerations 

7.1 Different lives of an observation 

It is perhaps not always realized how often and in how many ways an observation or set of 
observations is used. The most immediate way is in weather and climate forecasting via the 
analyses used to initiate short range high resolution (~4km) weather forecasts up to 2 days, 
moderate resolution (20km) forecasts up to 10 days, ensembles of medium resolution forecasts 
up to 15 days, ensembles of intraseasonal forecasts (40km) up to 30 days, seasonal forecasts 
(80km) up to a year, and in the future, as decadal forecasts become more mature, to multi-
annual time scales. 

A completely different stream would use the same observations, not in near-real-time analyses, 
but in delayed reanalyses. These are used for validation and model bias correction and 
calibration, whereby some aspects of model deficiencies can be corrected. Calibration is applied 
in some way to all forecasts from days to years. 

An interesting feature of reuse of data is that it influences not just real-time forecasts of today 
but will influence forecasts for many years into the future.  Additionally much greater use can be 
made of observations today than was possible when they were taken 10, 20, 50, etc. years ago.  
This results from the improvements in models and in analysis procedures. 

A third stream of use of an observation is in scientific research, ranging from improving 
parameterisation of physical processes to greater understanding of major phenomena such as 
the Intraseasonal Oscillation and ENSO. 

Finally, an aspect of the sustained observing system often overlooked, is its contribution to the 
forecast verification. There is a lot of experience gained during the routine monitoring and 
verification of forecasts (or learning from errors). Verification is essential to identify different sort 
of errors, and it often sets the directions for model development. 

7.2 Panorama for TPOS 2020 

7.2.1 Ready-Get Set-Go 

The IRI and the Red Cross have been advocating an approach to the use of forecasts of many 
timescales, in order to improve their use for society. The idea is a simple one. Use the seasonal 
forecasts to provide an outlook of potential major climatic anomalies, several months in 
advance, so that steps can be taken to start getting ready. The next stage (the GET SET stage) 
is to use intraseasonal forecasts which will start to refine the nature of the anomaly and refine 
the probability of what happening where. This is refined further through the use of medium 
range forecasts in the GO stage. 

7.2.2 Interpretation of climate and decadal signals 

As well as expanding the forecast capabilities from the seasonal to daily timescales, as 
illustrated with the Ready-Get Set-Go example, TPOS 2020 should be ready to serve the needs 
for climate monitoring and decadal forecasting. There is increasing need to detect and predict 
decadal variability. Indeed, the Pacific basin has received a lot of attention in relation with the 



recent hiatus of the surface warming. Quoting the feature news of Nature (16th January 2014), 
“And here, the spotlight falls on the Equatorial Pacific”.  

7.3 Continuous but steady progress 

There is a perception that progress in seasonal forecasting has plateaued and that there has 
been little progress in the last few years. We think that this not the case. While it is generally 
accepted that seasonal forecasting is a more difficult problem than was initially conceived in the 
early days of TOGA (1985-1994) progress is being made, albeit more steady than revolutionary, 
but if experience in weather forecasting is anything to go by, this is hardly surprising. 

Figures 2.1 and 3.1 show progress over the years from the ECMWF medium range and 
seasonal systems respectively. Progress is being made on two fronts.  Not only is the RMS 
error of the forecasts being reduced (the usual measure of skill), but the forecasts are becoming 
more reliable in that the growth in the ensemble spread now matches the growth of error; the 
forecasts are no longer far too confident with the observed values lying frequently outside the 
ensemble, when retrospectively verified.   

What may be less reliably known is if there is increased skill in predicting the evolution of large 
events.  There are only two in the period with better observations (82/3 and 96/7).  With a 
sample of only two events it is difficult to validate the models reliably.  Attempts are being made 
to use more extended atmospheric reanalyses, going back a hundred years buoyed by the 
encouraging results from simpler models (Chen et al., 2003). Our best approach is to 
understand processes and improve the various parameterisations used in the models. Here too, 
there appears to be steady progress. 

7.4 On the Observing System Experiments 

Observing system experiments (OSEs), or Observing system simulation experiments (OSSEs) 
provide a mechanism for obtaining guidance on the potential importance of an observing system 
(or even on specific measurements or measurement sites). The strategy consists of performing 
analyses with and without the observing system. In the case of OSSEs the observing system 
does not exist and observations must be simulated. This could be because the system is still in 
planning or has been withdrawn or reduced as in the case of TAO/TRITON (TT). We will not 
consider OSSEs further. 

The first check is to compare analyses with and without the observation system, to gauge the 
impact on the analyses. Examples of this were given in Figure 3.3 and in TPOS 2020 WP5. In 
Figure 3.3, it was shown that the analyses without TT were noticeably less accurate at mooring 
sites when the TT data are not used, especially in the west Pacific. 

A second check is to compare the forecasts from analyses made with and without the observing 
system. Because the atmosphere is chaotic and the models used to make forecasts are 
imperfect, any forecast system must consist of an extensive set of ensembles. It is thus not 
possible to verify the impact on a single forecast. In fact to obtain reliable statistics it is 
necessary to run the forecasts over many realizations spanning many years. This is very costly 
and so only limited sets of forecasts are feasible. Examples of OSEs are given in Figure 3.2 and 
also in TPOS 2020 WP5. 



One could argue that to identify the effect of TAO/TRITON on say the prediction of Nino3.4 
SST, one might need an ensemble of at least 3 members, ideally run every month for 10 years  
(the bigger the effect, the smaller the set needed to establish statistical reliability). More chaotic 
variables such as 2m temperature (T2m) in the extratropics, or precipitation, need considerably 
more ensemble members, since the spread of the PDF (Probability Distribution Function) of the 
target variable is larger and the shift in the mean of the PDF likely to be small compared with its 
width (Kumar and Hoerling, 1995). A greater effect might be expected in the tails of the 
distribution but the models are likely to be less reliable here.    

Evaluating the significance of OSEs is difficult as the results are likely to be model dependent.  
For example fig 3.2 , obtained using ECMWF S3 shows an important role for TT based on the 
2001-6 period (this period was chosen as the study aimed to compare the relative importance of 
TT and ARGO and 2001-6 was the then period of ARGO coverage). Later results using 
ECMWF S4 do not confirm this result. The reason has not yet been investigated but could be 
because the analysis system involving atmospheric analyses and reanalyses as well as ocean 
reanalyses has improved (or deteriorated) or because the longer period suggests the earlier 
results were not as statistically reliable as thought.   

There is a further complication; the impact on the analysis is complex and never investigated in 
its entirety. For example, TT provides not just ocean observations but also surface meteorology 
(vector winds and humidity) which can influence the atmospheric analyses (see section 2.6). In 
the OSEs discussed here and in TPOS 2020 WP5, the effect of TT winds on reanalyses is not 
considered. Further, because of flaws in the atmospheric and oceanic models, systematic errors 
are present. Attempts to deal with these are usually included in the analysis system through a 
bias correction. However, this bias is based on an operational system in which the bias will have 
been evaluated over a substantial period of time, maybe 20 years or more, and so the bias 
estimate will have knowledge, albeit implicit, of the observing system whose importance is being 
evaluated.  Without the observing system, the bias estimate would likely be less accurate.  
Since bias is perceived to be important (see Balmaseda et al., 2007) in improving the quality of 
the analyses and forecasts, and the bias would be less accurate if one withdrew the observing 
system while evaluating the bias, it is likely that the importance of the observing system being 
tested is underestimated. On the other hand the bias may be caused by the observing system, 
resulting from say a mismatch between the wind forcing and the observed thermocline depth 
(for example, see  Bell et al., 2004; and Balmaseda et al., 2007). For these various reasons, 
blind interpretation of OSEs is not encouraged. They should be carried out using several models 
to see if a consistent picture emerges. But this may not be sufficient. Analysis systems are 
flawed (analysis is a very complex process). One example of this is shown in Figure 3.3 lower 
panel, when the fit to the verifying data actually improves when a data stream, in this case 
ARGO, is removed. It could be that ARGO and TT are inconsistent, but a more likely 
interpretation is that the data assimilation system is not using the data in an optimum way. One 
should note, however, that correcting errors like this is unlikely to be straightforward. Progress 
will undoubtedly be made, but on a scale of decades rather than years. 

In summary, OSEs are a useful and essential tool for assessing the importance of an 
observation system and their use, particularly multi-model approach, should be encouraged, but 
they must be interpreted with caution. 



8. Data Requirements and Recommendations  

There are different aspects of a forecast system (initialization, system development, verification 
and calibration) that require observational information. Methodology for objective evaluation of 
the observing system only exists for the initialization, in terms of so-called “forecast sensitivity” 
evaluation, or from more ad-hoc Observing System Experiments (OSES). Even then, it is not 
always easy to extract useful information. In NWP there is routine forecast evaluation, but the 
metrics are not targeted to the boundary layer or surface variables. At seasonal and monthly 
forecasts range, the size of sample to be evaluated is smaller, and it is harder to establish 
statistical significance.  Some ad-hoc OSES are conducted to evaluate in the initialization and 
forecast for seasonal time scales. But results are generally not very conclusive; vary a lot from 
different systems; and appear to be influenced by model error, rendering the evaluation quite 
difficult. To our knowledge, there has not been any evaluation of the observing system with 
forecasting systems at monthly time scales. In any case, this sort of evaluation targets only the 
impact of observations on the initialization of forecasts, but it can not measure the impact of the 
observations on the other components of a forecasting system (such as verification or model 
development). 

TPOS 2020 WP5 offers a thorough list of observing system requirements from the ocean 
initialization perspective. Specific requirements for NWP are also captured by the relevant WMO 
expert groups. Rather than duplicating these documents, in what follows we provide a 
discussion of the relevant attributes of any observing system, including  data delivery, accuracy, 
stability, resilience, temporal sampling and span, spatial sampling and coverage, including focus 
areas, and variables for the ocean, for waves, and for atmosphere boundary layer.  

8.1. Data Streams 

Regarding the delivery of data, operational centers would need at least 2 streams of data 
delivery: real time stream via GTS, to be used for the initialization of forecasts, and a BRT 
quality-controlled data stream. The latter is used for a variety of applications, which allow for 
longer delay times. Close-to-real-time reanalyses used for monitoring and the backbone of a 
seasonal forecasting system can accept delays of around 10-15 days to receive better 
processed data (such as better orbit specification for altimeter sea level or bias-corrected Argo 
salinity data). Verification of current forecasts need data (either station or L2) arriving with a 
delay or about 1-3 months.  Delays of years or decades are accepted for re-processed data, or 
observations recovered from data mining. 

8.2 Accuracy  

It is difficult to provide hard set values for accuracy and precision of the observations. Indeed, 
these will depend very much on the application, and it is likely to vary in time as the models get 
better. Given that model error is still large, the requirements for verification will be more relaxed 
than for assimilation. Requirements for model development may vary, and in some cases very 
precise observations may be needed. From the assimilation perspective, it is important that the 
observations are unbiased. It is better to have larger random errors in the observations than 
smaller systematic biases. It is also important that the errors are stable in time, and 
homogeneous in space. If this is not possible, models to parameterize these errors should be 



provided. Currently, the instrument error of most in-situ observations is small compared with the 
representativeness error (which is determined by the model unresolved spatial and temporal 
scale). One possibility is to require that the observation random error should not exceed a 
percentage of the variability that the forecast system is trying to predict (say 1-5%).  

8.3 Stability  

An important requirement for the observing system is continuity and stability in time. Although 
changes leading to improvement are of course welcome, exploring new ways of obtaining 
efficient measurements should not compromise more traditional but critical  observations. Well 
established observing systems should only be abandoned when there is clear evidence that 
they are redundant, or that the needs they were serving can be catered by alternative means.  
One should bear in mind that for calibration of seasonal forecasts requires stable data records 
of about 30 years. The longer the record, the better the calibration of extreme events is 
performed. For decadal forecasting and climate monitoring, records of 50-100 years are 
required.  

8.4 Resilience  

The observing system needs to be robust and resilient to guarantee that the needs of 
operational services are met. This implies some degree of redundancy, to cover for failure of 
individual components. It may also be advisable to formulate a priority list for sites and 
observations that need to be maintained in critical situations. 

8.5 Spatial sampling, coverage and focus areas  

The equatorial region appears challenging for both atmospheric and ocean models. The 
question is whether regions where forecasting systems do not make good use of observations 
should be more, or on the contrary less, sampled. The Equator is a key region for the earth’s 
climate and for monthly to seasonal forecasts. From that point of view it should be sufficiently 
sampled. Ocean models also have problems with western boundary currents, which are also 
key for the ocean circulation and air-sea interaction.  

The robust broad scale sampling of in-situ temperature and salinity achieved by Argo should be 
maintained, and if possible enhanced. The sampling of the deep ocean below 2000m is needed 
for advancing decadal forecasts, reanalyses of the global ocean, and ocean model 
development. 

Enhanced sampling of the ocean and atmosphere boundary layer should be considered, both 
for model development and for coupled data assimilation. The enhancement includes higher 
vertical and temporal resolution, as well as the existence of reference flux sites sampling 
different regimes. More specific studies are needed to establish the needs for a sustained 
observing system of the ocean-atmosphere boundary layer. 

The high resolution spatial sampling of surface variables achieved by satellite instruments (SST, 
SSH, SSS, ocean color, surface winds) is needed, and it is likely to have higher impact as the 
model resolution increases. 

 



8.5 Temporal sampling 

The temporal sampling is not independent of the spatial sampling. Currently global coverage of 
the ocean at 3 x 3 degrees is achieved by Argo every 10 days, but this should be increased if 
possible. Equally, daily global coverage at, say, 2 x 2 degree of SSH by satellite altimeter would 
be desirable. Satellite altimetry does not yet resolve the diurnal cycle. The temporal sampling by 
the moored array (daily and sub-daily) is very valuable. 

General guidelines for temporal sampling would be: 1-3 hours sampling for ocean-atmosphere 
boundary layer process. Daily sampling for in-situ subsurface (upper 1000m) at a spatial 
resolution of 200km-1000km (depending on the region). Below 2000m, monthly samplings may 
be adequate, but more specific studies are needed.   

8.6 Essential variables 

The following variables are considered necessary (see also WP5) 

� Ocean subsurface [T(z),S(z),U(z)] 
� Ocean surface [SST, SSS, Surface Currents], as well as  SSH, Geoid, and 

Bottom pressure 
� Atmosphere Surface and BL: surface winds, T2m, humidity, SLP, and 

precipitation 
� Waves: wave height, wave period, wave spectrum 
� Multivariate (collocated at same location), direct or derived: heat flux, humidity 

flux, wind stress, TKE profile, ocean-atmosphere boundary layer high resolution 
soundings. 
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Appendix A 

A.1 Naming convention used in this paper 

To facilitate the discussion of the data needs it is helpful to introduce a naming convention 
regarding the processing level of the observations, the quality control, and the time-delivery 
properties.  

For the processing level we follow the remote sensing convention, which classifies the data in 
different levels (L0 to L4) as described in the Appendix A.2. This will also be used for in-situ 
data. L0 data is not usually required in the applications mentioned in this paper. For operational 
forecasting we will be talking about level 1 (L1) to level 4 (L4). Most of the in-situ data used in 
operational forecasting are L2 (intended geophysical variables (IGV) at measurement location 
and time.  When the data have been gridded (such as some Argo gridded products), binned in 
time, and sometimes combined with other data sources, it becomes L3. These can have regions 
or periods of time with missing data. If a further degree of processing takes place, the data can 
become L4. This is the case of analyses conducted with models via data assimilation, or when 
derived geophysical variables (DGV) are produced by some sort of geophysical constraint (such 
as geostrophic transports, or Argo derived velocities, or surface currents from altimeter). Some 
derived variables such as section transports or surface fluxes derived from bulk formulae are 
available only at precise locations, and no gridding algorithm has taken place. We will refer to 
these products as L3-D (D for Derived), to distinguish them from the more direct L2-QC and 
gridded L4 products. 

Table A1 - Naming convention for data streams according to the delivery time and processing level. IGV 
is for Intended Geophysical Variable and DGV is for Derived Geophysical Variable. See text for other 

acronyms. 

Product Level Processing Use Examples 

L2  IGV 
No Gridded 
 

Real Time Initialization 
(Analyses) 

Data acquired via GTS 

L2-QC IGV-QC 
No Gridded 
Time series possible 

Reanalyses. 
Verification. Model 
development 

WOA/EN3 data set.  

L3 IGV 
Binned. Areas with 
missing data permitted. 
Time series possible 

Analyses and 
Reanalyses 
Verification. Model 
development 

Gridded sea-level maps 
from altimeter. 
Ocean Color 
climatology. 
 

L3-D DGV 
Binned. Areas with 
missing data permitted. 
Time series possible 

Analyses and 
Reanalyses. 
Verification. Model 
development 

Transports. Fluxes from 
bulk-formulae at 
observation points 

L4 IGV/DGV 
Gridded. 

Analyses and 
Reanalyses. 

Surface fluxes from 
Reanalyses.  



Time series possible Verification. Model 
Development 

Surface currents from 
reanalyses 

 
For many operational applications L2 data is expected to be delivered in near real-time 
(traditionally within 3 hours in meteorology and say within 24 hours for ocean applications) 
following a protocol that allows its automatic acquisition and usage, often under the auspices of 
the WMO. We will refer to this data stream as NRT. The L2 data can have some degree of 
quality controlled (QC), such as bias correction, black-listing, and others. We will refer to this as 
L2-QC. The QC often takes place in specialized data processing centers, and this may result in 
a delay in the delivery, even when the QC is done on a routine/operational basis. We can refer 
to this data stream as BRT, since it arrives behind real-time, but it can still be used in 
operational delayed products such as reanalyses. The delay time application of observed data 
depends very much of the application, and will be specified whenever is needed. When L2-QC 
data from a fixed location are further treated to provide time-series with the data binned at 
adequate time-intervals (daily, monthly), the product becomes L3 or L3-timeseries. Note that the 
L3 data can still have regions or period where the data is missing. Finally, there can be very 
sophisticated QC and processing procedures (especially some of L4 data), without specific 
delivery time requirements.  

A.2 Levels of processing of remote sensing data 

In remote sensing the data is classified in different levels (Level 0 to Level 4) according to the 
degree of processing:. 

● L0: Reconstructed, unprocessed instrument and payload data at full resolution, with any 
and all communications artifacts (e. g., synchronization frames, communications 
headers, and duplicate data) removed. 

● L1a: Reconstructed, unprocessed instrument data at full resolution, time-referenced, 
and annotated with ancillary information, including radiometric and geometric calibration 
coefficients and georeferencing parameters (e.g., platform ephemeris) computed and 
appended but not applied to the L0 data (or if applied, in a manner that L0 is fully 
recoverable from L1a data). 

● L1b: These are L1a data that have been processed to sensor units (e. g., radar 
backscatter cross section, brightness temperature, etc.); not all instruments have L1b 
data; L0 data is not recoverable from L1b data. 

● L2: Derived geophysical variables (e. g., ocean wave height, soil moisture, ice 
concentration) at the same resolution and location as L1 source data. 

● L3: Variables mapped on uniform space-time grid scales, usually with some 
completeness and consistency (e. g., missing points interpolated, complete regions 
mosaicked together from multiple orbits, etc.). 



Supplementary Material  

Illustration of Equatorial Dynamics and Time Scales  
 

 
Figure S1 - Longitude-time diagrams of equatorial thermocline depth (left) and SST (right) anomalies. The 

thermocline depth is represented by the depth of the 20 degree Isotherm (D20). The anomalies are 
computed respect the 1989-2008 climatology. The eastward propagation of equatorial Kelvin waves is 

visible in D20 usually preceding the appearance of SST anomalies in the Eastern Pacific (from the 
ORAS4 ocean reanalysis (Balmaseda et al., 2013)). The figure also shows that a thermocline anomaly 

associated with an individual Kelvin wave does not always translate into a large scale SST anomaly, as it 
happened in the “failed” El Niño of 2011, when in spite of a substantial propagation of the thermocline 

anomalies the warm SST anomaly was very short lived, and the El Niño did not materialized. The figure 
also shows the variability associate with the westward propagating Tropical Instability Waves in Eastern 

Pacific. 

Ocean Observing System 

Supplementary Figure S2 shows schematically the different components of the ocean observing 
system and their availability in time. SST observations are essential for seasonal forecasts. 
Most of the initialization systems also use subsurface temperature from XBT’s (Expendable 
bathythermograph), CTDs (Conductivity, Temperature and Depth) usually from scientific 
cruises, moored buoys (TAO/TRITON in the Pacific, PIRATA in the Atlantic, RAMA in the Indian 
Ocean) and Argo floats. Salinity (mainly from Argo and CTDs), and altimeter-derived sea-level 
anomalies (SLAs, since approximately 1993) are also assimilated. The latter usually need a 
prescribed external Mean Dynamic Topography (MDT), which can be derived indirectly from 
gravity missions such as GRACE (Gravity Recovery and Climate Experiment) and, in the near 
future, GOCE (Gravity field and steady-state Ocean Circulation Explorer). Supplementary figure 
S3 shows the time evolution of the number of temperature and salinity observations, as well as 



the typical spatial distribution. The figure shows the large increase in observations associated to 
the advent of Argo. The properties of spatial and temporal sampling varies substantially 
between instruments: the XBTs usually follow commercial ship routes, CTDs are associated 
with intense scientific missions, the moored array samples the equatorial oceans at few selected 
fix positions; Argo, is only observing system that sample uniformly the subsurface of the ocean, 
measuring temperature and salinity up to depth of 2000m. Altimeter sea-level (not shown) also 
samples the surface of the ocean quite uniformly, but a good relation between sea level 
variations and subsurface structure is only possible in regions of strong stratification (the 
tropics). 

 
 

Figure S2 - Time evolution of the ocean observing system by instrument.  
 

 
Figure S3 - (left) Number of temperature (top) and salinity (bottom) observations within the depth range 

400m-600m as a function of time per instrument type. The black curve is the total number of 
observations. The orange curve shows the number of assimilated observations. (right) Typical 

observation coverage in June 1980 (top) and in June 2005 (bottom). Note that the color coding for the 
instruments is not the same in the left and right panels. 


